If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+84x-124=0
a = -3; b = 84; c = -124;
Δ = b2-4ac
Δ = 842-4·(-3)·(-124)
Δ = 5568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5568}=\sqrt{64*87}=\sqrt{64}*\sqrt{87}=8\sqrt{87}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(84)-8\sqrt{87}}{2*-3}=\frac{-84-8\sqrt{87}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(84)+8\sqrt{87}}{2*-3}=\frac{-84+8\sqrt{87}}{-6} $
| 20/57=2/x | | x2+10x1=0 | | 5(7)=3y | | n=8+2*3 | | 6.2g+4=4.2g+10 | | 7/x-3=13/x-9 | | 5y*10=-3y*14 | | (x+10)/8=x/3 | | 6.6g+6=1.6g+31 | | -.0192(x-225)^2=12 | | 15/7=113/14x | | 7x+8=7x+9 | | 25*3.333=x | | 8x=4x+10x(x-x) | | z+2z-2=16 | | 30-x=10-(6x+10) | | x÷8=4 | | 9=6-c | | (3x/4)+(2x/8)=(3/4)+(x/4) | | 20v-5v-4v+4v-8v=14 | | 5x-15-6x=-2 | | (5b-8)-2(2b+4=-5 | | 5480-89x=4412 | | 2(r+2)=8 | | (x+10)^5-70=0 | | 1370+48x=2378 | | 45+8w=13w | | 3=12/c | | 6-h=2 | | (10x-5)-(x-6)=0 | | 1370+48x=14 | | 11u=8+7u |